Purpose
The figure displays the estimators of the individual parameters in the Gaussian space, and those for random effects, (e.g. the conditional expectations and for i from 1 to N and the conditional modes) v.s. the covariates.
Example of graphic
In the proposed example, the parameters estimation for a PKPD model on the warfarin data set is presented. The random effects of 3 parameters of the PD model are displayed w.r.t. a transformed version of the weight (t_wt=log(wt/70)), the weight, and the sex category.
Settings
- Grid arrange. Define the number of individual parameters (or random effects) and covariate that are displayed. The user can define the number of rows and the number of columns.
- Display
- The user can choose to see either the individual parameters or the Random effects.
- Data
- Splines: add/remove the a spline interpolation
- Regression lines: add/remove the affine fit
- Baseline: add/remove the baseline.
- Informations : add/remove the correlation information for each continuous covariate and each random effect.
- Legend : add/remove the legend.
- Estimator. The user can define which estimator is used for the definition of the individual parameters.