A model for observations depend on a vector of individual parameters ψ . As we want to work with a population approach, we now suppose that 
 comes from some probability distribution 
.
In this section, we are interested in the implementation of individual parameter distributions . Generally speaking, we assume that individuals are independent. This means that in the following analysis, it is sufficient to take a closer look at the distribution 
 of a unique individual i. The distribution 
 plays a fundamental role since it describes the inter-individual variability of the individual parameter 
.
In Monolix, we consider that some transformation of the individual parameters is normally distributed and is a linear function of the covariates:
This model gives a clear and easily interpreted decomposition of the variability of  around 
, i.e., of 
 around 
:
The component  describes part of this variability by way of covariates 
 that fluctuate around a typical value 
.
The random component  describes the remaining variability, i.e., variability between subjects that have the same covariate values.
By definition, a mixed effects model combines these two components: fixed and random effects. In linear covariate models, these two effects combine additively. In the present context, the vector of population parameters to estimate is . Several extensions of this basic model are possible:
We can suppose for instance that the individual parameters of a given individual can fluctuate over time. Assuming that the parameter values remain constant over some periods of time called \emph{occasions}, the model needs to be able to describe the inter-occasion variability (IOV) of the individual parameters.
If we assume that the population consists of several homogeneous subpopulations, a straightforward extension of mixed effects models is a finite mixture of mixed effects models, assuming for instance that the distribution  is a mixture of distributions.